Using the experimentally determined value $f^{\mathrm{d}}=0.33$ leads to $a=k_{2} / k_{1}=0.67$ and $A_{4} / A_{0}{ }^{0}=0.40$.

It should be noted that the value calculated for $A_{4} / A_{0}{ }^{0}$ is not highly sensitive to the values used for the coefficients in Scheme V. For example, if statistical corrections are omitted (as in Scheme IV) and f is again taken as $0.33, A_{4} / A_{0}{ }^{0}=0.46$.

References and Notes

(1) (a) G. L. Schmir, J. Am. Chem. Soc., 90, 3478 (1968); (b) W. P. Jencks, "Catalysis in Chemistry and Enzymology," McGraw-Hill, New York, 1969, Chapter 10; (c) T. Okuyama, T. C. Pletcher, D. J. Sahn, and G. L. Schmir, J. Am. Chem. Soc., 95, 1253 (1973), and references cited therein; (d) A. C. Satterthwait and W. P. Jencks, ibid., 96, 7018, 7031 (1974).
(2) (a) P. Deslongchamps, C. Lebreux, and R. Taillefer, Can. J. Chem., 51, 1665 (1973); (b) P. Deslongchamps, Pure Appl. Chem., 43, 351 (1975); (c) P. Deslongchamps, S. Dubé, C. Lebreux, D. R. Patterson, and R. J. Tailleter, Can. J. Chem., 53, 2791 (1975); (d) P. Deslongchamps and R. J. Taillefer, lbid., 53, 3029 (1975); (e) P. Deslongchamps, Tetrahedron, 31, 2463 (1975); (f) Heterocycles, 7, 1271 (1977).
(3) J. E. Blackwood, C. L. Gladys, K. L. Loening, A. E. Petrarca, and J. E. Rush, J. Am. Chem. Soc., 90, 509 (1968).
(4) (a) M. A. Weinberger and R. Greenhalgh, Can. J. Chem., 41, 1038 (1963); (b) M. Kandel and E. H. Cordes, J. Org. Chem., 32, 3061 (1967); (c) C. O. Meese, W. Walter, and M. Berger, J. Am. Chem. Soc., 96, 2259 (1974); (d) W. Walter and C. O. Meese, Chem. Ber., 109, 922 (1976); (e) C. O. Meese, Dissertation, Universitat Hamburg, 1978, p 82.
(5) W. Walter and C. O. Meese, Chem. Ber., 109, 947 (1976).
(6) K. Koehler, W. Sandstrom, and E. H. Cordes, J. Am. Chem. Soc., 86, 2413 (1964).
(7) (a) R. B. Martin and A. Parcell, J. Am. Chem. Soc., 83, 4830 (1961); (b) G. E. Lienhard and T.-C. Wang, Ibid., 90, 3781 (1968); (c) R. K. Chaturvedi and G. L. Schmir, ibid., 91, 737 (1969).
(8) G. M. Blackburn and W. P. Jencks, J. Am. Chem. Soc., 90, 2638 (1968).
(9) V. F. Smith, Jr., and G. L. Schmir, J. Am. Chem. Soc., 97, 3171 (1975).
(10) The value for $K_{\text {OH }}$ reported here is not directly comparable to those listed in ref 9 , since different values of the ion product of water were used in the present work ($p K_{w}=13.83$) and in the earlier study ($p K_{w}=14$).
(11) (a) Y. N. Lee and G. L. Schmir, J. Am. Chem. Soc., 100, 6700 (1978); (b) ibid., 101, 3026 (1979).
(12) T. Okuyama, D. J. Sahn, and G. L. Schmir, J. Am. Chem. Soc., 95, 2345 (1973).
(13) (a) R. E. Barnett and W. P. Jencks, J. Am. Chem. Soc., 91, 2358 (1969); (b) C. Cerjan and R. E. Barnett, J. Phys. Chem., 76, 1192 (1972).
(14) A. C. Satterthwait and W. P. Jencks, J. Am. Chem. Soc., 96, 7045 (1974).
(15) W. Walter and C. O. Meese, Chem. Ber., 110, 2463 (1977).
(16) R. M. Moriarty, C.-L. Yeh, K. C. Ramey, and P. W. Whitehurst, J. Am. Chem. Soc., 92, 6360 (1970)
(17) Reference $4 \mathrm{e}, \mathrm{p} 301$.
(18) C. Rabiller, J. P. Renou, and G. J. Martin, J. Chem. Soc., Perkin Trans. 2, 536 (1977).
(19) Melting points and boiling points are uncorrected. Analyses were performed by Galbraith Laboratories, Knoxville, Tenn. NMR spectra were obtained with a Varian T-60 or 270 MHz Bruker spectrometer, and are given in parts per million relative to internal tetramethylsilane.
(20) G. M. Burnett and K. M. Riches, J. Chem. Soc. B, 1229 (1966).
(21) L. A. LaPlanche and M. T. Rogers, J. Am. Chem. Soc., 85, 3728 (1963).
(22) A. Lidén, C. Roussel, T. Liljefors, M. Chanon, R. E. Carter, J. Metzger, and J. Sandstrom, J. Am. Chem. Soc., 98, 2853 (1976).
(23) H. Meerwein, Org. Synth., 46, 113 (1966).
(24) H. S. Harned and B. B. Owen, ''The Physical Chemistry of Electrolytic SoIutions'', 3rd ed., Reinhold, New York, 1958, p 645.
(25) T. H. Fife and T. C. Bruice, J. Phys. Chem., 65, 1079 (1961).
(26) R. K. Chaturvedi, A. E. MacMahon, and G L. Schmir, J. Am. Chem. Soc., 89, 6984 (1967).
(27) R. K. Chaturvedi and G. L. Schmir, J. Am. Chem. Soc., 90, 4413 (1968)
(28) Estimated from $\mathrm{K}_{\mathrm{OH}}=7.69 \mathrm{M}^{-1} \mathrm{~min}^{-1}$ and $E_{\mathrm{a}}=12.24 \mathrm{kcal} / \mathrm{mol}$ for ethyl acetate at $26.1^{\circ} \mathrm{C}$ in 5.6% acetone-water [E.S. Amis and S. Siegel, J. Am. Chem. Soc., 72, 674 (1950)].
(29) N. M. Rodiguin and E. N. Rodiguina, 'Consecutive Chemical Reactions'", Van Nostrand, Princeton, N.J., 1964.
(30) P. Deslongchamps, U. O. Cheriyan, J.-P. Pradère, P. Soucy, and R. J. Taillefer, Nouveau J. Chim., 3, 343 (1979)
(31) A referee has suggested that scheme i, with relative values of the rate constants as shown, satisfactorily describes the changes in isomer composition observed during hydrolysis at alkaline pH . Although we cannot at present unequivocally rule out this scheme, it should be noted that the principal conclusions of this study remain unchanged, regardless of which kinetic scheme is used to calculate the predicted difference in amine yield. The integrated rate equations for scheme i are readily derived, ${ }^{29}$ and lead to the following conclusions: (a) starting with the pure 1-E isomer, 67% of the hydrolysis product comes from 1-E and 33% from 1-Z; (b) starting with the equimolar mixture of $1-E$ and $1-Z, 50 \%$ of the product comes from each isomer. Using again the imidates $\mathbf{4}$ and 5 as models for $1-E$ and $1-Z$, respectively, a difference of 13% in amine yield is predicted.

On the Mechanism of the Keto-Enol Tautomerism in Radical Cations and Gas-Phase Closed-Shell Systems

Janet S. Splitter* and Melvin Calvin
Contribution from the Laboratory of Chemical Biodynamics and Department of Chemistry, University of California, Berkeley, California 94720. Received February 13, 1979

Abstract

The enol-keto tautomerism in radical cations has been considered to involve a symmetry-forbidden 1,3-hydrogen shift. An alternative process involves two consecutive 1,2-hydrogen shifts. The ΔH_{f} 's of the intermediate ions formed by a 1,2hydrogen shift in the radical cations of phenol and the enol form of acetic acid have been calculated to be 220 and $191 \mathrm{kcal} /$ mol, respectively. These $\Delta H_{\mathrm{f}}^{\prime}$'s indicate barriers to the keto-enol tautomerism via two consecutive 1,2 -hydrogen shifts of 50 and $47 \mathrm{kcal} / \mathrm{mol}$, respectively, in good agreement with previously determined experimental values of 55 and $51 \pm 10 \mathrm{kcal} / \mathrm{mol}$, respectively. The tautomerism in the closed-shell systems l-butene $\rightleftharpoons 2$-butene, vinyl alcohol \rightleftharpoons acetaldehyde, $\mathrm{H}_{2} \mathrm{C}=\mathrm{O}^{+} \mathrm{CH}_{3}$ $\rightleftharpoons \mathrm{H}_{3} \mathrm{CO}^{+}=\mathrm{CH}_{2}$, and $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{O}^{+} \mathrm{CH}_{3} \rightleftharpoons \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}^{+}=\mathrm{CH}_{2}$ is discussed in terms of two consecutive 1,2-hydrogen shifts.

Recently, a maximum barrier of $2.4 \mathrm{eV}(55.2 \mathrm{kcal} / \mathrm{mol})$ was determined ${ }^{1}$ for the enol-keto tautomerism of the metastable phenol radical cation (1) ${ }^{2}$ to the 2,4 -cyclohexadien-1-one radical cation (3). ${ }^{5}$ This tautomerism was considered to be a specific example of a sigmatropic 1,3-hydrogen migration, a symmetry-forbidden process. ${ }^{1}$

We propose that the energetics of this reaction may be accounted for by two consecutive 1,2-hydrogen shifts. ${ }^{9}$ The first 1,2-hydrogen shift would give ion 2 , which should approximate
the structure of the intermediate ion in the enol-keto tautomerism by this mechanism. ${ }^{10.14}$ The formation of ion 2 would be in accord with the "tight" transition state indicated by the large kinetic shift observed in the decomposition of 1 to give the $\mathrm{M}-\mathrm{CO}$ ion. ${ }^{1}$ The kinetic shift was manifested in a large variation of kinetic energy release with decomposition time. ${ }^{1}$

Energy Estimates and Reaction Mechanism. The ΔH_{f} of ion 2 may be estimated from the proton affinity of benzene, ${ }^{16}$

which gives a ΔH_{f} for cyclohexadienylium of $205.4 \mathrm{kcal} / \mathrm{mol}$. The ΔH_{f} of 2,4 -cyclohexadien- $1-\mathrm{yl}$ is $50 \mathrm{kcal} / \mathrm{mol},{ }^{17}$ and thus the ionization potential (IP) of this radical is $155.4 \mathrm{kcal}(6.76$ $\mathrm{eV})$. The ΔH_{f} of the diradical corresponding to ion 2 was calculated to be $64.1 \mathrm{kcal} / \mathrm{mol}$ according to the additivity procedure ${ }^{6}$ by using a group additivity value of $9.4 \mathrm{kcal} / \mathrm{mol}$ for $\mathrm{C}-(\mathrm{O} \cdot)(\mathrm{C})\left(\mathrm{C}_{\mathrm{d}}\right)(\mathrm{H})$ and $\mathrm{C}-(\mathrm{O} \cdot)(\mathrm{C} \cdot)\left(\mathrm{C}_{\mathrm{d}}\right)(\mathrm{H})$, which was derived from the value of $7.8 \mathrm{kcal} / \mathrm{mol}$ for $\mathrm{C}-(\mathrm{O} \cdot)(\mathrm{C})_{2}(\mathrm{H})$ plus the difference between the value of $-7.2 \mathrm{kcal} / \mathrm{mol}$ for C $(\mathrm{H})(\mathrm{O})(\mathrm{C})_{2}$ and $-5.6 \mathrm{kcal} / \mathrm{mol}$ for $\mathrm{C}-(\mathrm{H})(\mathrm{O})(\mathrm{C})\left(\mathrm{C}_{\mathrm{d}}\right) .{ }^{18}$ The ring correction value used was $-1.5 \mathrm{kcal} / \mathrm{mol}$, which was obtained from the ΔH_{f} of 2,4-cyclohexadien-1-yl. ${ }^{17}$ By assuming no orbital overlap between the radical and cation orbitals in ion 2, the IP of the diradical should be similar to the IP of $2,4-$ cyclohexadien $1-\mathrm{yl}$ giving a ΔH_{f} for ion 2 of $220 \mathrm{kcal} / \mathrm{mol}$. This value compares well with the experimental value of 225 $\mathrm{kcal} / \mathrm{mol}$ for the transition-state energy. ${ }^{1}$

The barrier to the enol-keto tautomerism of the ionized enol form of acetic acid to ionized acetic acid was found to be ~ 51 $\mathrm{kcal} / \mathrm{mol} .{ }^{19}$ The mechanism of the tautomerism occurring via two successive $1.2-\mathrm{H}$ shifts was considered unlikely because the ΔH_{f} of ion $\mathbf{4}$ was estimated by Franklin's group equivalents

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{C}=\mathrm{C}(\mathrm{OH})_{2} 7^{+} \stackrel{1,2-\mathrm{H}}{\stackrel{\text { shift }}{\rightleftharpoons}}+\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{O}^{\circ}\right)(\mathrm{OH}) \stackrel{1,2-\mathrm{H}}{\stackrel{1}{\text { shift }}} \mathrm{aH}_{3} \mathrm{COOH} 7^{+} \\
& \Delta \mathrm{H}_{\mathrm{f}} 144 \mathrm{kcal} / \mathrm{mol} \quad \Delta \mathrm{H}_{\mathrm{f}} \sim 191 \mathrm{kcal} / \mathrm{mol} \quad \Delta \mathrm{H}_{\mathrm{f}} 136 \mathrm{kcal} / \mathrm{mol} \\
& 4
\end{aligned}
$$

to be $205 \mathrm{kcal} / \mathrm{mol}^{19}$ which was $10 \mathrm{kcal} /$ mol greater than the experimental transition-state energy of $195 \pm 10 \mathrm{kcal} / \mathrm{mol}$. An estimation of $-3.4 \mathrm{kcal} / \mathrm{mol}$ obtained by using group additivity values ${ }^{20}$ for the ΔH_{f} of the diradical corresponding to 4 and an estimated IP of $\sim 8.45 \mathrm{eV}$ for this diradical similar to the $1 P$ of $\cdot \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}^{22}$ gives a value of $191 \mathrm{kcal} / \mathrm{mol}$ for the ΔH_{f} of 4. This value indicates that the tautomerism via two successive $1,2-\mathrm{H}$ shifts is energetically possible.

The estimated ΔH_{f} 's of the intermediate ions in these two examples are lower than experimental values by $4-5 \mathrm{kcal} / \mathrm{mol}$. A possible inductive destabilizing effect of the oxygen radical was not included in the estimated ΔH_{f} 's, but this effect would not be expected to be more than the inductive destabilizing effect of $2.6 \mathrm{kcal} / \mathrm{mol}$ for the hydroxyl group in $\mathrm{HOCH}_{2} \mathrm{CH}_{2}{ }^{+} .22$ The accuracy of the experimental and calculated data are dependent on the accuracy of the appearance potential (AP) measurements and the ΔH_{f} 's of the radicals. The proton affinity scale, which is based on the ΔH_{f} of 169 $\mathrm{kcal} / \mathrm{mol}$ for the tert-butyl cation, has been suggested to give values for the ions $4-8 \mathrm{kcal} / \mathrm{mol}$ too high. ${ }^{23}$ If the recent IP of $6.58 \mathrm{eV}^{24}$ and the ΔH_{f} of $8.4 \mathrm{kcal} / \mathrm{mol}^{25}$ for the tert-butyl radical are used, the ΔH_{f} of the tert-butyl cation is $160 \mathrm{kcal} /$ mol. Thus, the calculated ΔH_{f} of ions 2 and 4 may be high by $9 \mathrm{kcal} / \mathrm{mol},{ }^{26}$ On the other hand, the experimental barriers may also be high by approximately this amount. In addition, the derived additivity values for $\mathrm{C}-(\mathrm{O} \cdot)(\mathrm{C} \cdot)\left(\mathrm{C}_{\mathrm{d}}\right)(\mathrm{H})$ and $\mathrm{C}-(\mathrm{O} \cdot)(\mathrm{O})(\mathrm{C} \cdot)(\mathrm{H})$ may be high by $2-4 \mathrm{kcal} / \mathrm{mol}$, because the value for $\mathrm{C}-(\mathrm{O} \cdot)(\mathrm{C})_{2}(\mathrm{H})$ appears to be high by $2-4 \mathrm{kcal} /$ mol. ${ }^{27}$

Related Reactions. Comparisons of the barriers in these radical cations have been made ${ }^{1.19}$ with the barriers to the thermal uncatalyzed $1,3-\mathrm{H}$ shift in closed shell systems. However, as Woodward and Hoffmann have stated, thermal sigmatropic 1,3 shifts proceed with such high activation
energies that the energy surface for concerted reaction cannot be far from that for stepwise processes. ${ }^{30}$ Therefore, several examples will be discussed in terms of two successive $1,2-\mathrm{H}$ shifts.

Recently, a study of the pyrolysis of 1-butene at low concentrations indicated that at least 50% of the 2 -butene production was via a molecular rearrangement with an activation energy of $\sim 76 \mathrm{kcal} / \mathrm{mol} .{ }^{31}$ The transition-state energy for this rearrangement via two successive $1,2-\mathrm{H}$ shifts should be similar to that of the structural isomerization of methylcyclopropane

to 1- and 2-butenes which has been considered to proceed via a diradical intermediate. ${ }^{6}$ The experimental E_{a} for the structural isomerization is $64 \mathrm{kcal} / \mathrm{mol}$, in good agreement with the estimate of $63 \mathrm{kcal} / \mathrm{mol}$, which includes an activation energy for the $1,2 \cdot \mathrm{H}$ shift from the diradical intermediate. ${ }^{6 \mathrm{~b}, 32}$ Therefore, the E_{a} for the rearrangement of 1-butene to 2 butene via two successive $1,2-\mathrm{H}$ shifts would be $69 \mathrm{kcal} / \mathrm{mol}$ in fair agreement with the experimental value. ${ }^{34}$

An analogous scheme for the tautomerism of vinyl alcohol to acetaldehyde would indicate an $E_{\mathrm{a}} \geq 72 \mathrm{kcal} / \mathrm{mol}$ based on the experimental E_{a} for the structural isomerization of oxirane

to acetaldehyde of $57 \mathrm{kcal} / \mathrm{mol} .{ }^{38}$ The E_{a} of $4.4 \mathrm{kcal} / \mathrm{mol}$ for the $1,2-\mathrm{H}$ shift from the diradical to acetaldehyde was expected to be this amount ${ }^{39}$ based on the $80 \mathrm{kcal} / \mathrm{mol}$ exothermicity of the reaction. The E_{a} is $7 \mathrm{kcal} / \mathrm{mol}$ for the $1,2-\mathrm{H}$ shift from the trimethylene diradical to propene and the exothermicity, $66 \mathrm{kcal} / \mathrm{mol} .^{41}$ Thus, the E_{a} for the $1,2-\mathrm{H}$ shift from the diradical to vinyl alcohol would be $\sim 6 \mathrm{kcal} / \mathrm{mol}$ based on the $\sim 71 \mathrm{kcal} / \mathrm{mol}^{42}$ exothermicity of the reaction, and the E_{a} of the structural isomerization of oxirane to vinyl alcohol would be $\sim 59 \mathrm{kcal} / \mathrm{mol}$. The E_{a} for the tautomerism of vinyl alcohol to acetaldehyde via two successive $1,2-\mathrm{H}$ shifts would be ~ 74 $\mathrm{kcal} / \mathrm{mol}$, obtained by using the calculated value ${ }^{40}$ for the ΔH_{f} of vinyl alcohol.

Ab initio calculations of the E_{a} for the symmetry-forbidden suprafacial $1,3-\mathrm{H}$ shift in propene and vinyl alcohol indicate an E_{a} of $93 \mathrm{kcal} / \mathrm{mol}$ for the $1,3 \cdot \mathrm{H}$ shift in propene and 95 $\mathrm{kcal} / \mathrm{mol}$ for the $1,3-\mathrm{H}$ shift in vinyl alcohol. ${ }^{40}$ These values are considerably higher than the values indicated by the biradical mechanism.

The rearrangement in another closed-shell system was attributed to a symmetry-forbidden 1,3-H shift: $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{O}^{+} \mathrm{CH}_{3} \rightleftharpoons \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}^{+}=\mathrm{CH}_{2} .{ }^{44}$ The experimental E_{a} was found to be a minimum of $58 \mathrm{kcal} / \mathrm{mol}$ giving a transition-state energy (TSE) of $208 \mathrm{kcal} / \mathrm{mol} .{ }^{44}$ The ΔH_{f} of the intermediate ion, $\mathrm{CH}_{3} \dot{\mathrm{C}} \mathrm{HO}^{+} \mathrm{HCH}_{2}$, which would be formed via two successive $1,2-\mathrm{H}$ shifts, is estimated to be ~ 201 $\mathrm{kcal} / \mathrm{mol}^{46}$ based on the proton affinity of methyl ethyl ether. The additional E_{a} for the $1,2-\mathrm{H}$ shift from the intermediate ion to the product ion is estimated to be $\sim 9 \mathrm{kcal} / \mathrm{mol}^{50}$ giving a TSE of $\sim 210 \mathrm{kcal} / \mathrm{mol}$. This value may be high by $9 \mathrm{kcal} /$ mol as discussed above for ions 2 and 4 . If so, the estimated TSE would be $\sim 201 \mathrm{kcal} / \mathrm{mol}$. The experimental TSE may not be high by very much because the authors later revised the maximum TSE for the 1,3 - H shift in $\mathrm{CH}_{2}=\mathrm{O}^{+} \mathrm{CH}_{3}$ from 227^{44} to $236 \mathrm{kcal} / \mathrm{mol} .{ }^{51}$ Also, their value for the ΔH_{f} of
$\mathrm{CH}_{2}=\mathrm{O}^{+} \mathrm{CH}_{3}$ was $13 \mathrm{kcal} / \mathrm{mol}$ lower ${ }^{44}$ than the recent value of $157 \mathrm{kcal} / \mathrm{mol}$. ${ }^{45}$

The experimental TSE for the $1,3-\mathrm{H}$ shift in $\mathrm{CH}_{2}=\mathrm{O}^{+} \mathrm{CH}_{3}$ was recently found to be $210 \pm 7 \mathrm{kcal} / \mathrm{mol}$ by the ICR method. ${ }^{52}$ If this shift occurs via two successive $1,2-\mathrm{H}$ shifts the estimated ΔH_{f} of the intermediate ion formed, $\cdot \mathrm{CH}_{2} \mathrm{O}^{+}$$\mathrm{CH}_{2} \cdot,{ }^{53}$ would be $215 \mathrm{kcal} / \mathrm{mol}$ based on the proton affinity of dimethyl ether. ${ }^{54}$ An additional E_{a} of $\sim 9 \mathrm{kcal} / \mathrm{mol}$ for the $1,2-\mathrm{H}$ shift from the diradical intermediate would give a TSE of $224 \mathrm{kcal} / \mathrm{mol}$, clearly greater than the experimental TSE. ${ }^{55}$ However, the E_{a} for the $1,2-\mathrm{H}$ shift from the diradical intermediate may be less than $9 \mathrm{kcal} / \mathrm{mol}$. This value is based on the Polanyi relation for the $1,2-\mathrm{H}$ shift in neutral diradicals, ${ }^{50}$ and thus there may be different constants in the equation for cation diradicals. Because there are no experimental values to determine these constants, the E_{a} for the $1,2-\mathrm{H}$ shift is uncertain. As noted, ${ }^{10}$ the $E_{\text {a }}$ for the 1,2-H shift from the intermediate ion in radical cations is assumed to be small. Also, the ΔH_{f} of the intermediate ion is based on the bond dissociation energy (BDE) of the $\mathrm{C}-\mathrm{H}$ bond in dimethyl ether. ${ }^{47}$ If this BDE is high by $2 \mathrm{kcal} / \mathrm{mol},{ }^{56}$ the ΔH_{f} of the intermediate ion would be high by $4 \mathrm{kcal} / \mathrm{mol}$. These changes in the ΔH_{f} of the intermediate ion and the E_{a} for the $1,2-\mathrm{H}$ shift from the intermediate ion would also apply to the previous example.

If allowance is made in the last two examples for the uncertainty regarding the $E_{\text {a }}$ for the $1,2-\mathrm{H}$ shift from the intermediate ions as well as the ΔH_{f} 's of these intermediate ions, all the experimental E_{a} 's are consistent with the mechanism of two successive $1,2-\mathrm{H}$ shifts. If the concerted mechanism were operating, the experimental E_{a} 's should have been at least 3 $\mathrm{kcal} / \mathrm{mol}$ less than the transition-state energies predicted for the two-step mechanism. ${ }^{37}$ Thus, the $1,3-\mathrm{H}$ shift in these examples is not obviously concerted. The E_{a} for the suprafacial, symmetry-forbidden, $1,3-\mathrm{H}$ shift would be equal to or greater than the E_{a} for the shift via two consecutive $1,2-\mathrm{H}$ shifts. The transition state for the concerted shift would be almost as tight ${ }^{40}$ as for the shift via the two-step mechanism.

Acknowledgment. We thank Dr. A. M. Falick for helpful comments on the manuscript. The work described in this paper was sponsored, in part, by the Office of Health \& Environmental Research, Department of Energy, under Contract W-7405-eng-48.

References and Notes

(1) D. H. Russell, M. L. Gross, and N. M. M. Nibbering, J. Am. Chem. Soc., 100, 6133 (1978).
(2) The ΔH_{f} of 1 is the sum of the ΔH_{f} phenol ($\left.-23.1 \mathrm{kcal} / \mathrm{mol}\right)^{3}$ and its adlabatic IP $(8.4 \mathrm{eV})$. ${ }^{4}$
(3) S. W. Benson, 'Thermochemical Kinetics'', 2nd ed., Wiley, New York, 1976, p 296
(4) T. P. Debies and J. W. Rabalais, J. Electron Spectrosc., 1, 355 (1973).
(5) The ΔH_{f} of 3 is the sum of the ΔH_{4} of 2,4-cyclohexadien-1-one (-0.5 $\mathrm{kcal} / \mathrm{mol}$ by the additivity procedure ${ }^{6}$) and the IP estimated to be 8.2 eV , 0.1 eV greater than the adiabatic IP of cyclohexadiene (estimated to be 0.15 eV lower than its vertical PP^{7}). The vertical IP of 2-cyclohexen-1-one ${ }^{8}$ is 0.1 eV greater than the vertical IP of cyclohexene. ${ }^{7}$
(6) (a) Ref 3, Chapter II; (b) S. W. Benson and H. E. O'Neal, Natl. Stand. Ref. Data Ser., Natl. Bur. Stand., NSRDA-NBS 21 (1970).
(7) P. Bischof and E. Heilbronner, He/v. Chim. Acta, 53, 1677 (1970).
(8) A. Schweig, H. Vermeer, and U. Weidner, Chem. Phys. Lett., 26, 229 (1974).
(9) R. D. Bowen and D. H. Williams, Org. Mass Spectrom. 12, 453 (1977), have proposed this mechanism for double-bond migration in alkene radical cations.
(10) 1,2-H shifts in radical cations have been assumed to occur with little activation energy other than the enthalpy differences of the radical cations before and after the 1,2-H shift. ${ }^{9}$ The data in ref 9 , Table 8 , and Scheme 3 shows the small amount of interconversion between the molecular ions of 2-methyl-1-pentene and 2-methyl-2-pentene, indicating that the energy of the transition state for interconversion is not less than the estimated ΔH_{f} of the transition state formed via a $1,2-\mathrm{H}$ shift. On the other hand, the energy of the transition state for the isomerization of the molecular ions of 2-and 3 -octene to 3 - and 4-octene appears to be no greater than the estimated ΔH_{f} of the transition state formed via a $1,2-\mathrm{H}$ shift. This ΔH_{f} is ~ 203 $\mathrm{kcal} / \mathrm{mol}$ (diradical, $\Delta H_{4} 35.0 \mathrm{kcal} / \mathrm{mol}$ by the additivity procedure, ${ }^{6} 1 \mathrm{P} \sim$ $\left.7.3 \mathrm{eV}^{11}\right), \sim 3 \mathrm{kcal} / \mathrm{mol}$ lower than the product ion level of $\sim 206 \mathrm{kcal} / \mathrm{mol}$
for the $m-\mathrm{C}_{2} \mathrm{H}_{5}$ ion, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CH}^{+} \mathrm{CHCH}_{3}$, which has the lowest activation energy of the fragment ions from the isomerized linear octenes. ${ }^{12}$ The ΔH_{4} of this ion is estimated from the ΔH_{f} of the radical, $17.5 \mathrm{kcal} / \mathrm{mol}$ by the additivity procedure; ${ }^{6} \mathrm{IP} \sim 7.1 \mathrm{eV} .{ }^{13}$ The data in ref 12 show that the frequency factor for the isomerization is comparable to that of the rearrangement reactions.
(11) F. P. Lossing and A. Maccoll, Can. J. Chem., 54, 990 (1976).
(12) F. Borcher, K. Levsen, H. Schwartz, C. Wesdemiotis, and H. Winkler, J. Am. Chem. Soc., 99, 6359 (1977).
(13) F. P. Lossing and J. C. Traeger, Int. J. Mass Spectrom., 19, 9 (1976).
(14) 1,2-Hydride shifts with $\mathrm{C}-\mathrm{C}$ bond cleavage have been shown to occur in linear alkane molecular ions with no additional energy required. 11,15
(15) P. Wolkoff and J. L. Holmes, J. Am. Chem. Soc., 100, 7346 (1978).
(16) J. F. Wolf, R. H. Staley, I. Koppel, M. Taagepera, R. T. Mclver, Jr., J. L. Beauchamp, and R. W. Taft, J. Am. Chem. Soc., 99, 5417 (1977).
(17) Ref 3, p 299.
(18) The additivity value for $\mathrm{C}-(\mathrm{H}) \mathrm{K}) \times\left(\mathrm{C} \times \mathrm{C}_{\mathrm{d}}\right)$ was estimated to be $-5.6 \mathrm{kcal} / \mathrm{mol}$, assuming its value to be greater than the value of $-7.2 \mathrm{kcal} / \mathrm{mol}$ for C $(\mathrm{H} X \mathrm{O})(\mathrm{C})_{2}$ by the same amount that the value of $-6.5 \mathrm{kcal} / \mathrm{mol}$ for C $(\mathrm{H})_{2}\left(\mathrm{OXC} \mathrm{C}_{\mathrm{d}}\right)$ is greater than the value of $-8.1 \mathrm{kcal} / \mathrm{mol}$ for $\mathrm{C}-(\mathrm{H})_{2}(\mathrm{OXC})$. The group additivity value for $\mathrm{C}-(\mathrm{C} \cdot)_{2}(\mathrm{H})_{2}$ is assumed to be the same as C $(\mathrm{C})_{2}(\mathrm{H})_{2}{ }^{6}$ and thus $\mathrm{C}-(\mathrm{O} \cdot)(\mathrm{C} \cdot)\left(\mathrm{C}_{\sigma}\right)(\mathrm{H})$ is assumed to be the same as $\mathrm{C}-(\mathrm{O} \cdot)$ $(C)\left(C_{d}\right)(H)$.
(19) H. Schwarz, D. H. Williams, and C. Wesdemiotis, J. Am. Chem. Soc., 100, 7052 (1978).
(20) The group additivity value for $\mathrm{C}-(\mathrm{O} \cdot)(\mathrm{O})(\mathrm{C})(\mathrm{H})$ was estimated to be -1.3 $\mathrm{kcal} / \mathrm{mol}$ assuming that the difference between $\mathrm{C}-(\mathrm{O})_{2}(\mathrm{C})(\mathrm{H})^{21}$ and C $(\mathrm{O} \cdot \times \mathrm{O})(\mathrm{C})(\mathrm{H})$ is the same as the difference between $\mathrm{C}-(\mathrm{O})(\mathrm{C})_{2}(\mathrm{H})$ and C $(\mathrm{O} \cdot \mathrm{XC})_{2}(\mathrm{H}){ }^{21} \mathrm{By}$ convention, $\mathrm{C}-(\mathrm{O} \cdot)(\mathrm{OXC} \cdot(\mathrm{H})$ was assumed to have the same value as $\mathrm{C}-(\mathrm{O} \cdot \mathrm{Y}(\mathrm{O})(\mathrm{C})(\mathrm{H})$ (see last sentence, ref 18).
(21) Ref 3, pp 73 and 275.
(22) The IP of $\mathrm{HOCH}_{2} \mathrm{CH}_{2}$, has been found by calculation to be 0.11 eV greater than the $1 P$ of $\mathrm{CH}_{3} \mathrm{CH}_{2}{ }^{*}$; see L. Radom, J. A. Pople and P. von R. Schleyer, J. Am. Chem. Soc. 94, 5935 (1972). The IP of $\mathrm{CH}_{3} \mathrm{CH}_{2}$. is approximately 8.35 eV ; see F. P. Lossing and G. P. Semeluk, Can. J. Chem., 48, 955 (1970) for their value and literature values.
(23) F. A. Houle and J. L. Beauchamp, J. Am. Chem. Soc., 100, 3290 (1978).
(24) J. Dyke, N. Jonathan, E. Lee, A. Morris, and M. Winter, Phys. Ser., 16, 197 (1977).
(25) A. C. Baldwin, K. E. Lewis, and D. M. Golden, Int. J. Chem. Kinet., 11, 529 (1979).
(26) A recent value for the PA of ethylene, $166.4 \mathrm{kcal} / \mathrm{mol}$ (Y. H. Li, Diss. Abstr. Int. $B, 37,2276(1976)$, and ref 16) gives $\Delta H_{f}\left(\mathrm{C}_{2} \mathrm{H}_{5}^{+}\right)=213 \mathrm{kcal} / \mathrm{mol}$. If this value is high by $9 \mathrm{kcal} / \mathrm{mol}$, then the $\Delta \mathrm{H}_{1}\left(\mathrm{C}_{2} \mathrm{H}_{5}{ }^{+}\right)$should be $204 \mathrm{kcal} /$ mol, which is $15 \mathrm{kcal} / \mathrm{mol}$ less than the accepted value of $219 \mathrm{kcal} / \mathrm{mol}^{22}$ on which the ΔH_{4} of ion 4 is based. Thus, the ΔH_{4} of ion 4 may be 15 $\mathrm{kcal} / \mathrm{mol}$ less than the calculated value of $191 \mathrm{kcal} / \mathrm{mol}$.
(27) J. F. Foucout and R. Martin, J. Chim. Phys. Phys.-Chim. Biol., 75, 132 (1978), have found the $\Delta H_{1}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O} \cdot\right.$) from the pyrolysis of diethyl ether to be 2.6 $\mathrm{kcal} / \mathrm{mol}$ less than the accepted value of $-4.0 \mathrm{kcal} / \mathrm{mol}$. ${ }^{17}$ The ΔH_{f} of 25.7 $\mathrm{kcal} / \mathrm{mol}$ for $\mathrm{C}_{2} \mathrm{H}_{5}$. used in their calculations may be low by $2 \mathrm{kcal} / \mathrm{mol}$. ${ }^{28}$ Thus, the accepted value for the ΔH_{4} of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O} \cdot$ may be high by as much as $4.6 \mathrm{kcal} / \mathrm{mol}$. The ΔH_{4} of $i-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}$. may be high by a similar amount because the bond strengths of the OH bond in the corresponding alcohols should be similar. ${ }^{29}$
(28) R. Marshall and L. Rahman, Int. J. Chem. Kinet., 9, 705 (1977).
(29) K. Janousek, A. H. Zimmerman, K. J. Reed, and J. I. Brauman, J. Am. Chem. Soc., 100, 6142 (1978), found the bond strengths to be $\sim 2 \mathrm{kcal} / \mathrm{mol}$ less than accepted values.
(30) R. B. Woodward and R. Hoffmann, "The Conservation of Orbital Symmetry", Verlag Chemie GmbH, Weinheim/Bergstr., 1970, p 120.
(31) D. R. Powers and W. H. Corcoran, Prepr, Div. Pet. Chem., Am. Chem. Soc., 20, 208 (1975).
(32) The ΔH_{4} of this diradical is calculated to be $58 \mathrm{kcal} / \mathrm{mol}$ according to additivity values. ${ }^{8 a}$ However, recent data on the ΔH_{i} of alkyl radicals ${ }^{28,33}$ indicates a ΔH_{f} of $62 \mathrm{kcal} / \mathrm{mol}$.
(33) R. M. Marshall and N. D. Page, Int. J. Chem. Kinet., 11, 199 (1979).
(34) In the pyrolysis of 1-butene, the competitive reaction to propenyl and methyl radicals has $E_{\mathrm{a}}=74.5 \mathrm{kcal} / \mathrm{mol}$ and $\log A=16.0^{31}$; rate constant at 575°
$=6.3 \times 10^{-4} \mathrm{~s}^{-1}$ Assuming $\Delta S^{\mp=0}=0$ for $1-b$ tene $=2-b u t e n e$ radicals has $E_{\mathrm{a}}=74.5 \mathrm{kcal} / \mathrm{mol}$ and $\log A=16.0^{3}$, rate constant at $5.3 \times 10^{-4} \mathrm{~s}^{-1}$. Assuming $\Delta S^{\neq}=0$ for 1 -butene $\rightleftharpoons 2-$ butene, ${ }^{35} \mathrm{log}$ A was calculated to be 13.7 at $575^{\circ} \mathrm{C}$ and the rate constant $8 \times 10^{-5} \mathrm{~s}^{-1}$ for $E_{\mathrm{a}}=69 \mathrm{kcal} / \mathrm{mol}$. From the rate constants, the proportions of products due to cleavage (each propenyl and methyl radical reacts with one molecule of 1-butene) to product due to rearrangement is $24: 1 \mathrm{in}$ good agreement with the experimental distribution. If the rearrangement were concerted, the E_{a} would be at least $3 \mathrm{kcal} / \mathrm{mol}$ less ${ }^{37}$ and the rate constant 5×10^{-4} s^{-1}. The amount of 2-butene due to rearrangement would be $\sim 21 \%$, much greater than the $\sim 5 \%$ which could be attributed to molecular rearrangement.
(35) $\Delta S^{\ddagger}=0$ for propene \rightarrow cyclopropane from $S^{\circ}=64$ eu for the transition state and $S^{\circ}=64$ eu for propene. ${ }^{36}$
(36) Ref $6 \mathrm{~b}, \mathrm{p} 15$, for $\Delta S^{\ddagger}=7$ eu for cyclopropane \rightarrow propene, and ref 6 b , p 223, for $S^{\circ}=57$ eu for cyclopropane and $S^{\circ}=64$ eu for propene.
(37) W. E. Doering and K. Sachdev, J. Am. Chem. Soc., 97, 5512 (1975).
(38) M. L. Neufeld and A. T. Blades, Can. J. Chem., 41, 2956 (1963).
(39) S. W. Benson, J. Chem. Phys., 40, 105 (1964). The ΔH_{f} of the diradical was estimated to be $40 \mathrm{kcal} / \mathrm{mol}$ in this reference and is consistent with recent data. ${ }^{27,28}$
(40) W. J. Bouma, M. A. Vincent, and L. Radom, Int. J. Quant. Chem., 14, 767 (1978).
(41) These values are based on ΔH_{f} of $71 \mathrm{kcal} / \mathrm{mol}$ for the trimethylene diradical estimated from the recent ΔH_{1} of the n-propyl radical. ${ }^{28}$
(42) The $\Delta H_{\text {f }}$ of vinyl alcohol was calculated ${ }^{40}$ to be $12 \mathrm{kcal} / \mathrm{mol}$ greater than the ΔH_{f} of acetaldehyde. However, experimental data on other enols ${ }^{43}$ indicates a ΔH_{f} of $-31 \mathrm{kcal} / \mathrm{mol}$ for vinyl alcohol.
(43) J. Hine and K. Arata, Bull. Chem. Soc. Jpn., 49, 3089 (1976).
(44) G. Hvistendahl and D. H. Williams, J. Am. Chem. Soc., 97,3097 (1975) The ΔH_{4} of the cation, $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{O}^{+} \mathrm{CH}_{3}$, was determined from the daughter ion and not the metastable ion. A later measurement of the ΔH_{f} of this cation gives a value of $132 \mathrm{kcal} / \mathrm{mol} .{ }^{45}$ Thus, the barrier would be 18 kcal greater than the $58 \mathrm{kcal} / \mathrm{mol}$.
(45) F. P. Lossing, J. Am. Chem. Soc., 99, 7526 (1977).
(46) The ΔH_{1} of the unprotonated diradical was estimated to be $28 \mathrm{kcal} / \mathrm{mol}$ from the bond dissociation energy (BDE $=93.3 \mathrm{kcal} / \mathrm{mol}$) of the $\mathrm{C}-\mathrm{H}$ bond of dimethyl ether ${ }^{47}$ and the BDE of $\sim 91 \mathrm{kcal} / \mathrm{mol}$ for the methylene $\mathrm{C}-\mathrm{H}$ bond of methyl ethyl ether which was estimated to be lower than the BDE of the C-H bond of dimethyl ether by the same amount that the BDE of the methylene $\mathrm{C}-\mathrm{H}$ bond of ethanol ${ }^{48}$ is less than the BDE of the $\mathrm{C}-\mathrm{H}$ bond of methanol. ${ }^{49}$ The proton affinity of the diradical was estimated to be the same as the PA of methyl ethyl ether. ${ }^{16}$
(47) F. R. Cruickshank and S. W. Benson, Int. J. Chem. Kinet., 1, 381 (1969).
(48) Z. B. Alfassi and D. M. Golden, J. Phys. Chem., 76, 3314 (1972).
(49) F. R. Cruickshank and S. W. Benson, J. Phys. Chem., 73, 733 (1969).
(50) From the Polanyi equation $E_{\mathrm{a}}=\mathrm{C}-\alpha\left(\Delta H^{\rho}\right)$ for exothermic reactions; C
$=19.3, \alpha=0.186$ from the E_{a} for the $1,2-\mathrm{H}$ shift in $\cdot \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$ and . $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}$.
(51) R. D. Bowen, D. H. Williams, and G. Hvistendahl, J. Am. Chem. Soc., 99, 7509 (1977).
(52) R. van Doorn and N. M. M. Nibbering, Org. Mass Spectrom., 13, 527 (1978)
(53) This intermediate ion was considered unlikely ${ }^{44}$ because there were no ions characteristic of protonated oxirane. However, there should be discrimination against an intermediate which has a more ordered transition state than dissociation.
(54) The ΔH_{f} of the unprotonated diradical was estimated to be $38 \mathrm{kcal} / \mathrm{mol}$ from the BDE of $93.3 \mathrm{kcal} / \mathrm{mol}$ for the $\mathrm{C}-\mathrm{H}$ bond of dimethyl ether. ${ }^{47}$ The PA of this diradical was estimated to be the same as the PA of dimethyl ether. ${ }^{18}$
(55) An adjustment for the PA values as discussed for ions 2 and 4 would require an equal adjustment for the experimental TSE, because it is based on the ΔH_{f} of $157 \mathrm{kcal} / \mathrm{mol}$ for $\mathrm{CH}_{2}=\mathrm{O}^{+} \mathrm{CH}_{3}^{45}$ which is relative to the ΔH_{1} 's of ions which have similar ΔH_{i}^{\prime} 's found from PA values.
(56) L. F. Loucks and K. J. Laidler, Can. J. Chem.. 45, 2785 (1967), found a BDE of $91.1 \mathrm{kcal} / \mathrm{mol}$.

Mechanism of Indole-Singlet Oxygen Reactions. Interception of Zwitterionic Intermediates and "Ene" Reaction ${ }^{1}$

Isao Saito,* Seiichi Matsugo, and Teruo Matsuura*
Contribution from the Department of Synthetic Chemistry, Faculty of Engineering, Kyoto University, Kyoto 606, Japan. Received March 7, 1979

Abstract

The trapping reaction of zwitterionic peroxides formed in singlet oxygen reaction of N-methylindoles is described. The zwitterionic peroxide derived from 1,3-dimethylindole (1) was intercepted by methanol, ethanol, isopropyl alcohol, and β-methoxyethanol. The trend of the efficiency of the trapping reactions by these alcohols was parallel to that for the interception of zwitterions from tetracyanoethylene and enol ethers by alcohols. It has been shown that the introduction of an electronwithdrawing substituent into the indole ring favors the trapping reaction over the oxidative cleavage of the 2,3 double bond. Thus, the photooxygenation of 1,2,3-trimethyl-5-nitroindole (7c), 9-methyl-6-nitro-1,2,3,4-tetrahydrocarbazole (10a), and 9-acetyl-1,2,3,4-tetrahydrocarbazole (10b) in methanol gave the corresponding trapping products $\mathbf{9}$, 11a, and 11b, respectively, whereas $1,2,3$-trimethylindole (7a), 5-methoxy-1,2,3-trimethylindole (7b), and 9-methyl-1,2,3,4-tetrahydrocarbazole (10c) yielded only the ring cleavage products. Photooxygenation of $7 a$ in alcohols gave the ring cleavage product $8 a$ as the major product, whereas in aprotic solvents 7 a produced the ene-type product 13a. In contrast, photooxygenation of 1,2 -dimethyltryptophol (7e) gave only the trapping product $\mathbf{1 6}$ in both protic and aprotic solvents. The result suggests that a common intermediate for both "ene" and 1,2 cycloaddition is captured intramolecularly by the nucleophilic group of the side chain. The experimental results have been explained by the mechanism involving gauche and cis zwitterions as the intermediates.

Introduction

Electron-rich alkenes such as enamines and enol ethers are known to react readily with singlet oxygen to yield unstable dioxetanes which can subsequently cleave to two carbonyl fragments. ${ }^{2}$ The mechanisms of the 1,2 cycloaddition are the subjects of much current controversy, the main question being whether the reactions are concerted or involve intermediates. A symmetry-allowed concerted $\left[\pi 2_{s}+{ }_{\pi} 2_{\mathrm{a}}\right.$] process has been first proposed for the 1,2 cycloaddition of singlet oxygen to olefins. ${ }^{2 b} 3$-5 According to the orbital and state correlation diagrams, the $\left[\pi 2_{s}+{ }_{\pi} 2_{s}\right]$ approach should be forbidden. ${ }^{2 b}$ However, this process might occur in the case of alkenes with particularly low ionization potentials. ${ }^{2 \mathrm{~b} .3,4}$ Stepwise 1,2 cycloaddition might occur via short-lived intermediates such as perepoxides, ${ }^{2 b, 8}$ zwitterions, ${ }^{4.7}$ or 1,4 biradicals. ${ }^{9}$ An electron transfer mechanism involving a radical cation and superoxide radical anion pair has also been proposed for the 1,2 cycloaddition of singlet oxygen to enamines. ${ }^{10}$ Recent theoretical studies have reported that zwitterionic intermediates should be important in the reaction of singlet oxygen with electronrich olefins, ${ }^{4.7}$ whereas Harding and Goddard have proposed by GVB-CI calculations the mechanism involving a 1,4 bira-
dical stabilized by an anomeric effect for the hydroperoxidation of methoxy-substituted olefins. ${ }^{9 b}$

Considerable experimental work has been done in order to elucidate the mechanism of the 1,2 cycloaddition. Bartlett and Schaap ${ }^{5}$ were the first to propose a concerted mechanism or one involving short-lived, stereochemically stable intermediates, based on the experimental observations, namely, the lack of a solvent effect on the rate of photooxygenation of cis-diethoxyethylene and the absence of stereochemical leakage during the photooxygenation in a polar solvent. On the other hand, we proposed over 10 years ago a zwitterionic precursor in the photooxygenation of highly electron-rich enamines such as fully N -alkylated uric acids. ${ }^{11}$ Thereafter, there have been reported several examples in which products might be most reasonably explained in terms of zwitterions. ${ }^{12}$ Recently, Conia et al. ${ }^{13}$ and Jefford ${ }^{14}$ have proposed a zwitterionic intermediate in explaining the high regioselectivity in the singlet oxygenation of cyclopropylethylenes. Zwitterionic intermediates are also postulated to play an important role in the reaction of triplet molecular oxygen with ketenes ${ }^{15}$ or strained acetylenes. ${ }^{16}$ However, these results do not provide conclusive evidence for the zwitterionic precursors. A chemical confirmation by in-

